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Krylov subspace methods to solve linear systems whose coefficient matrix is represented by an hierarchical matrix are discussed. We 

propose a precondition technique using a part of the original hierarchical matrix in order to accelerate the convergence of the Krylov 
subspace methods. The proposed precondition technique is based on the assumption that sub-matrices on the original hierarchical 
matrix are approximated by using the adaptive cross approximation or variants thereof. The performance of Krylov subspace methods 
with the proposed precondition technique are examined through numerical experiments on an electrostatic field analysis. 
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I. INTRODUCTION 

ierarchical matrices (H-matrices) [1]-[2], as well as the 
fast multipole method (FMM) [3]-[4], is one of 

approximation techniques which can be applied to dense 
matrices appeared on boundary element method (BEM). 
Although it is inconvenience of BEM to have to handle dense 
matrices when conducting large scale analyses, these 
approximation techniques enable us to conduct them. 
Furthermore, if we use distributed memory parallel computer 
systems besides the approximation techniques, we could 
perform huge size simulation. The authors have proposed 
parallel algorithms for H-matrices [5], and the HACApK 
library based on the algorithms is released [6].  

When we consider the use of a Krylov subspace method for 
solving a linear system with an H-matrix derived from a BEM 
analysis, some preconditioner will be needed to handle huge 
size problems. However, because of the special structure of H-
matrices, it is not straight forward to apply well-known 
preconditioners. An LU decomposition-based preconditioner 
for H-matrices is proposed in [7]. In this paper, a different 
approach is presented. We consider a kind of variable 
preconditioner [8]-[9], and propose a simple method to reduce 
the computational cost of the preconditioner with possessing 
the acceleration effect of the Arnoldi types of the Krylov 
subspace methods. We also examine its analogical algorithm 
to the BiCGSTAB method though the method is not based on 
the Arnoldi process. This is because it is reported in [4] that a 
variant of the BiCGSTAB method employing the method itself 
as the preconditioner is effective to solve the approximated 
linear system in the case of FMM application. 

II.  PROPOSED PRECONDITION TECHNIQUE 

For 	ܰ ∈ Գ , an H-matrix ሚு௄ܣ	 , the approximation of ܣ	 ∈
Թேൈே, is characterized by a partition ܪ of ܰ ൈܰ with blocks 
݄ ൌ ௛ݏ ൈ ௛ݐ ∈ ܭ	and block-wise rank ܪ . Then, sub-matrices 
corresponded to some of the blocks are dense matrices, and 

the sub-matrices corresponded to most of the blocks are low-

rank matrices represented by ሚுܣ	
௄|௛:ൌ ∑ ఔሻ்௞೓ݓఔሺݒ

ఔୀଵ , 
where ఔݒ	 ∈ Թ௦೓ ఔݓ , ∈ Թ௧೓  and 	݇௛ ൑ ܭ . The number ܭ  is 
determined such that ||ܣ െ ሚுܣ

௄||ி ൑  .ߝ	for a given tolerance ߝ
For	ݔ, ܾ ∈ Թே, we consider the following equation: 

  ሚு௄ܣ ݔ ൌ ܾ.   (1)
To solve (1), we consider a Krylov subspace method 
employing the Krylov subspace method itself as a 
preconditioner. It means that the method consists of a main 
solver to solve (1) and a preconditioner solver to solve 
roughly ݖܲ	 ൌ ݎ , where ݎ ∈ Թே  is determined in the main 
solver and ܲ ∈ Թேൈே is the so-called precondition matrix. The 
matrix ܲ should be an approximation of	ܣሚு௄ . The trivial case 
is	ܲ: ൌ ሚு௄ܣ .  

Our proposal is as follows: making low-rank sub-matrices 
ሚுܣ
௄|௛  by the adaptive cross approximation (ACA) [10] and 

applying the restricted H-matrix as ܭ ൌ 1 for the precondition 
matrix, i.e., 	ܲ: ൌ ሚுଵܣ . This is based on a heuristic that the 
approximation accuracy of low-rank matrices asymptotically 
becomes higher as the rank of the low-rank matrices k_h 
increases when the low-rank matrices are made by ACA. 
The arithmetic necessary for the proposed precondition 
technique is only the multiplication of the restricted H-
matrix ሚுܣ	

ଵ  and a vector. It can be calculated by using the 
original H-matrix	ܣሚு

௄  and the vector. Thus, we do not need any 
extra memory for storing the restricted the H-matrix	ܣሚு

ଵ . 

III. NUMERICAL EXPERIMENTS 

A. Test problem 

As a benchmark, we have selected an electrostatic field 
problem. It is assumed that perfect conductors, which have the 
shape of humanoids, are standing on the ground in a uniform 
electric field (Fig. 1). By using the surface charge method 
which is one of the indirect BEMs based on a single layer 
potential formulation, the induced electrical charge on the 
surface of humanoids is calculated. We divided the surface of 

H



humanoids into 2,359,680 triangular elements, and used step 
functions as the base function of BEM. We applied H-matrices 
with ACA by setting 10-4= ߝ to the coefficient matrices of the 
linear systems derived from the above formulation and get (1). 
In this case, the maximum rank 	ܭ ൌ 27 and the average of 
ranks of low-rank matrices was about 8. 

 

   
 

Fig. 1. Analytical condition (left) and the result (right). The analytical objects 
in the shape of humanoid is discretized by triangular elements, and they are 
arrayed on the grid of 6ൈ20. 

B. Examined algorithms 

In order to investigate the applicability of our proposed 
precondition technique, we have examined six algorithms 
summarized in Table I by solving (1). As represented Krylov 
subspace methods, the GCR(m) and the BiCGSTAB methods 
are selected. Cases 1-1 and 2-1 are standard algorithms 
without any preconditioner. The case 1-2 is so-called GCR(m) 
with the trivial variable preconditioner, and the case 2-2 is its 
analogical algorithm to BiCGSTAB. Cases 1-3 and 2-3 are 
algorithms used our proposed precondition technique, which 
are derived from cases 1-2 and 2-2 by replacing the coefficient 
matrix in preconditioner by	ܣሚுଵ . The case 1-3 is corresponded 
to the algorithm concluded effective in the case of an 
electrostatic field calculation by FMM in [4]. 
 

TABLE I 
EXAMINED ALGORITHMS 

Case Main solver 
Preconditioner 

solver 
Matrix used in 
preconditioner 

1-1 GCR(m) Not used - 
1-2 GCR(m) GCR(m) ܣሚு

ଶ଻ 
1-3 GCR(m) GCR(m) ܣሚு

ଵ  
2-1 BiCGSTAB Not used - 
2-2 BiCGSTAB BiCGSTAB ܣሚு

ଶ଻ 
2-3 BiCGSTAB BiCGSTAB ܣሚுଵ  

 

C. Calculation results 

All the algorithms in Table 1 are implemented by using the 
Fortran95 programming language and integrated with the 
HACApk library. We judge the convergence of the main 
solvers and preconditioner solvers by relative residual norms 
to be less than 10-6 and 10-1, respectively. Moreover, maximum 
number of iteration for preconditioner solvers is restricted to 8 
times. Furthermore, we set the parameter ݉ ൌ 8 for the restart 
of the GCR(m) method. All the calculations are carried out by 
using 2 cores on 2 computational nodes of CRAY XC30 at 
Kyoto University, which is equipped with Xeon E5TM and 
64GB memory per a node. 

In Fig. 2, convergence curves of the main solver are plotted 
when solving the problem above. In the first place, we focus 
on the difference of GCR(m) and BiCGSTAB methods. The 
convergence curve of the case 1-1 goes along with one of the 
case 2-1. Thus we conclude the application of GCR(m) or 
BiCGSTAB method without a preconditioner makes no large 
difference in the case of our test problem. Second, in the cases 
of BiCGSTAB method with preconditioner (cases 2-2, 2-3), 
they are slower than methods without a preconditioner. In our 
opinion, this is partially because the algorithms of cases 2-2 
and 2-3 are out of theorem of Krylov subspace methods with 
the variable preconditioner. Finally, we examine the GCR(m) 
methods with preconditioner. The case 1-2 reduces the number 
of iterations of the main solver from the case 1-1, but it results 
in the same as the case 1-1 in terms of calculation time. On the 
other hand, the GCR(m) with our proposed precondition 
technique (case 1-3) is significantly faster than normal 
GCR(m) and BiCGSTAB methods. The calculation time of the 
case 1-3 is about 2-thirds of cases 1-1 and 2-1. In terms of the 
number of iterations of the main solver, the difference of case 
1-2 and 1-3 is slight in spite of the large difference in 
computational costs. 

 

   
Fig. 2. Convergence curves of the main solver. They are plotted as functions 
of calculation time (left) and the number of iterations of the main solver 
(right). 
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